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Abstract 

The enormous genetic variability reported in HIV-1 has posed problems in the treatment 

of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, 

neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene 

products. Based on this, it has been suggested that a comprehensive analysis of the 

polymorphisms in HIV proteins is of value for understanding the virus transmission and 

pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. 

This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using 

information from global HIV-1 isolates involving a total of 976 Vpr sequences.  The 

polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 

showed a single variant amino acid compared to other residues. There are several amino acids 

which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 

16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at 

residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino 

acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like 

protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also 

extended our analysis of the amino acid polymorphisms to the experimentally defined and 

predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to 

the immune escape of the virus. The available data on naturally occurring polymorphisms will be 

useful to assess their potential effect on the structural and functional constraints of Vpr and also 

on the fitness of HIV-1 for replication.  

 



 

Introduction 

Humoral and cellular responses have been implicated in controlling viral and bacterial 

infections in addition to the host’s innate immune responses. This is, indeed, demonstrated in the 

context of HIV-1 infection [1-3]. Specifically, CTL responses against the virus have been shown 

to limit the virus replication at a low level in the infected individuals. This is evident in the 

inverse correlation of CTL responses vs. virus load observed in acutely infected individuals [4-

6]. Utilizing the rhesus macaque/SIV infection model, a suppressive effect on virus replication 

was shown for CTLs [7]. However, the initial CTL responses are not able to contain the virus at 

a later stage, possibly due to the emergence of viral variants that evade the immune responses 

resulting in continued virus replication [8, 9]. Hence, an understanding of the CTL escape 

variants of HIV is important both in natural viral infections and also in the context of vaccine-

induced immunity for developing effective CTL based polyvalent vaccines for containing 

diverse HIV-1 strains [10]. This is an area of research which is actively being pursued by several 

investigators [11, 12].  

The genome of HIV-1 has been shown to code for two regulatory proteins (Tat and Rev) 

and four auxiliary proteins (Vif, Vpr, Vpu and Nef) in addition to the Gag, Pol, and Env 

structural proteins [13]. The regulatory proteins Tat and Rev are essential for virus replication. 

Rev is involved in the transport of genomic and partially spliced subgenomic mRNA from the 

nucleus to the cytoplasm [14]. Tat is known as an activator of transcription of viral and cellular 

RNA. Vif plays an important role in HIV-1 replication in peripheral blood mononuclear cells 

(PBMC). Specifically, Vif prevents hypermutation in the newly made viral DNA through its 

interaction with APOBEC3G [15, 16]. Vpr is known for its incorporation into the virus particles. 



The interaction of Vpr with the Gag enables its incorporation into the virus particle. Vpr is a 

multifunctional protein and is involved in the induction of apoptosis, cell cycle arrest, and 

transcriptional activation [17]. Vpu plays a role in the particle release and degradation of CD4 

[14, 18, 19]. The features of Nef include downregulation of cell surface receptors, interference 

with signal transduction pathways, enhancement of virion infectivity, induction of apoptosis in 

bystander cells, and protection of infected cells from apoptosis [20-24].  

 Based on the data reported so far, it is clear that HIV-1 employs multiple strategies to 

successfully replicate in the infected individuals [14, 25, 26]. The enormous genetic variation 

that is generated through errors of reverse transcriptase enzyme may provide a pool of variants to 

evade the host immune responses against the virus and also result in the emergence of drug 

resistant viruses during treatment. In addition, it is also likely that the immunosuppressive effects 

of HIV-1 encoded proteins may attenuate the host immune responses in favor of the virus.  

Upon infection of target cells by the virus, viral proteins are synthesized for carrying out 

the functions related to the virus replication and also exert effect on specific host cell functions. 

In addition, viral proteins are also targeted to the proteosomal degradation pathway. This process 

results in the generation of peptides, which are then translocated to the ER through TAP and are 

presented on the cell surface in association with human leukocyte antigen (HLA) class I 

molecules. The genetic variability present in the coding sequences of the virus may result in viral 

proteins with alterations in the CTL epitopes, which may lead to defective processing, 

presentation or lack of recognition of the epitope by the reactive CTLs. This is the likely 

mechanism of the CTL escape by HIV-1 and other viruses. The presence of multiple CTL 

epitopes has been demonstrated in HIV-1 proteins including Gag, Pol, Vif, Vpr, Tat, Rev, Vpu, 

Env and Nef. Though the characterization of the epitopes with respect to the viral proteins is 



achievable in individual cases, such an analysis at a population level is difficult to carry out for 

the following reasons: i) HIV-1 exhibits high genetic variation in different regions of the 

genome. The extent of heterogeneity among circulating HIV-1 strains is described to be in the 

range of 20% or more in relatively conserved proteins and up to 35% for Env protein [11]. In 

addition, there is also extensive diversity among HIV-1 within a subtype, ii) There are multiple 

subtypes of HIV-1, and iii) There are variables at the HLA loci. On the other hand, this limitation 

can be overcome to some extent by utilizing alternative approaches where information about 

CTL epitopes and their variants can be inferred from the sequences available for HIV-1 [27-29]. 

The HIV sequence database has information about the viral isolates from different parts of the 

world. This information can be used as a source to assess the extent of naturally occurring 

polymorphisms and their potential impact on CTL epitopes. We hypothesize that mutations or 

alterations in the residues which are part of the CTL epitope in the Vpr molecule are likely to 

affect the epitope at multiple levels (processing and recognition of the epitope). Recently, studies 

have addressed this issue using full length or partial HIV-1 genome sequences [30]. This has 

prompted us to carry out a comprehensive analysis of the extent of variation at the amino acid 

level in the auxiliary gene product Vpr of HIV-1.   

The underlying reasons for the selection of Vpr for a comprehensive analysis are the 

following: i) Vpr is a virion associated protein, ii) Vpr plays a critical role for the replication of 

virus in macrophages, iii) Vpr is a transcriptional activator of HIV-1 and heterologous cellular 

genes, iv) Vpr arrests cells at G2/M, v) Vpr induces apoptosis in diverse cell types, vi) Vpr 

exhibits immune suppressive effect, vii) Vpr is present in the body fluids as an extracellular 

protein, viii) Vpr is highly immunogenic, ix) Vpr is a small protein comprising only 96 amino 

acids and x) Structural information for the whole Vpr molecule is available through NMR [17, 



31-34]. These features enable a detailed analysis of the polymorphisms in Vpr with respect to 

CTL epitopes, structure-function of the protein, and fitness of the virus for replication.     

In this study, we have analyzed the predicted amino acid sequences of Vpr from global 

HIV-1 isolates available through the HIV database. Specifically, the extent of genetic variation 

in Vpr in the form of polymorphisms at the individual amino acid level was comprehensively 

analyzed. Several of the amino acid polymorphisms were found to be part of the experimentally 

verified and predicted CTL epitopes. The location and nature of the variant amino acid were 

found to affect the CTL epitope considerably. Hence, our results provide a glimpse into the 

genetic footprints of immune evasion in Vpr.   

 

 

 

Materials and methods 

 

The goal of our studies is to assess the nature and extent of polymorphisms at the level of 

individual residues in the Vpr molecule. The sequences considered here comprise Vpr sequences 

derived from all the major subtypes of HIV-1. The details regarding the subtypes and the number 

of sequences from each subtype are presented in Table 1 and are taken from the HIV database 

(www.hiv.lanl.gov) [35-38]. In addition, we have included Vpr sequences derived from HIV-1 

positive long term non-progressors (McKeithen et al., unpublished data). It should be noted that 

we have also included Vpr from SIV isolated from chimpanzees, as this is likely the progenitor 

virus for HIV-1. Vpr sequences from the database were accessed in January of 2007. The 

deletions in the Vpr molecule were excluded from our analysis. The alignment of Vpr sequences 

(which is available from the authors upon request) was analyzed manually for variant amino 

acids at the level of individual residue in Vpr from global and distinct subtypes of HIV-1.  

 



Results 

Characteristics of Vpr sequences selected for this study. The alignment of Vpr sequences has 

enabled us to analyze the differences at the level of each residue from diverse HIV-1 isolates. A 

total of 976 Vpr sequences have been used for alignment. The polymorphisms, with respect to 

the length, have been noted in Vpr by several investigators [17, 39]. As this may pose problem 

for our analysis, our alignment does not take into account both deletions and insertions. The Vpr 

alleles are from diverse subtypes and include 67, 294, 185 and 44 Vpr sequences representing 

subtype A, B, C, and D, respectively (Table 1). The O, AE, AG, and cpx groups represent 39, 45, 

39 and 28 Vpr sequences, respectively. Since the Vpr sequences are derived from different 

sources such as viral RNA, cloned viral DNA and proviral DNA from tissues, we have not made 

attempts to classify them in our analysis.  

 

Amino acid polymorphisms in the predicted Vpr sequences. Recently, the structure of full 

length Vpr has been resolved by NMR [40]. According to this study, Vpr consists of a flexible 

N-terminal domain (amino acids 1-16), helical domain I (HI) (residues 17-33), turn (residues 34-

37), helical domain II (HII) (residues 38-50), turn (residues 51-54), helical domain III (HIII) 

(residues 55-77), and a flexible C-terminal domain (residues 78-96). Based on this structure, the 

polymorphisms observed in Vpr are presented with respect to the individual domain.  

 

N-terminus of Vpr (residues 1-16). The results presented in Table 2 regarding the N-terminal 

domain of Vpr show that all the residues excluding the initiator methionine are susceptible for 

alterations. The altered amino acids or polymorphisms at each residue are indicated as variant 

amino acids or substitutions. For convenience, we have used Vpr from NL4-3 proviral DNA as a 



reference sequence. The amino acid sequence of NL4-3 Vpr is similar to HIV-1 subtype B 

consensus Vpr except for residues 28(S), 77(Q) and 83(I). Interestingly, the residue 9, which is 

G, has only one variant amino acid. In an earlier study, it was noted that a change in residue 3 

from Q to R was not associated with cytopathic effect [41]. In our analysis,  variant amino acids 

H, L, M, and P were also noted for Q. Studies involving synthetic peptides corresponding to the 

N-terminus and also the full-length Vpr molecule have shown that the Vpr sequence (residues 

PHN) have the ability to form a γ-turn. The residue 15(H) exhibits eleven, residue 16 (N) shows 

ten and residue 14 (P) shows four variant amino acids. While residue 2 has two, residues 5 and 

12 register three variant amino acids. Residues 3, 4, 6, 7, 8, 10, 11, and 13 contain multiple 

variant amino acids ranging from five to eleven. The N-terminal domain contains a total of 79 

variant amino acids. Of these, non-conserved substitutions correspond to about 80% of the 

residues. 

 The impact of the majority of the polymorphisms on Vpr functions is not clear. 

Substitution of alanine for proline at residue 5 and 10 showed less or increased virion 

incorporation of Vpr, respectively [42]. Similarly, substitution of alanine for residue 12 reduced 

the cell cycle arrest function of Vpr [43]. On the other hand, substitution at residue 13 and 14 

showed an increase in cell cycle arrest [42, 44]. Hence, the naturally occurring polymorphisms 

are likely to affect the functions of Vpr.  

 

Helical domain I (HI residues 17-33). NMR studies of full length Vpr show that a region 

comprising the residues 17-33 adapt a helical structure. This was also predicted by several 

algorithms. The polymorphisms observed for the residues 17-33 are presented in Table 3. The 

characteristics of the residues with respect to the variant amino acids are the following: residues 



18, 23 and 26 show two substitutions; residue 20 has three substitutions; residues 25, and 29 

show four substitutions; residues 21, 24, 27, 30 and 32 show five substitutions; and residues 17, 

22, and 31 register six substitutions and residue 19 has eight substitutions. Interestingly, residue 

28 exhibits the highest number of substitutions and residue 33 has only one substitution. This 

domain exhibits a total of 80 variant amino acids and 61 of them are of non-conservative in 

nature.   

 Several laboratories including ours have reported on the importance of residues in the 

helical domain I for Vpr functions. Substitution of a proline residue for glutamic acid (residue 

17, 21, 24, 25, and 29) has a drastic effect on the stability, subcellular localization, and virion 

incorporation of Vpr [44-49]. The variant amino acids noted in this domain have the potential to 

destabilize and disrupt the function of Vpr. Similarly, substitution of alanine for leucine residue 

affected the stability and virion incorporation of Vpr [45, 48, 50-53]. Based on the studies 

reported, varying amino acid arginine for histidine at residue 33 will affect the subcellular 

localization and virion incorporation of Vpr [54].  

 

Interhelical domain I (residues 34-37). This region is present between helical domains I and II 

and comprises only four residues. It has been shown that residues in this region have the ability 

to form a γ-turn. The naturally occurring polymorphisms in this region are presented in Table 4. 

Site-specific mutagenesis studies have shown an important role for residues in subcellular 

localization, cell cycle arrest, apoptosis and virion incorporation of Vpr [42, 44, 51, 55, 56]. 

Residues 34 and 35 show only three substitutions. On the other hand, residue 36 and 37 register 

10 and 16 substitutions, respectively. The variant amino acids reach a total of 31 and 21 of them 

are of non-conservative in nature.  



 

Helical domain II (residues 38-50). Studies with peptide (1-50 amino acids) and full-length Vpr 

have shown that residues 38-50 correspond to helical domain II of Vpr. The naturally occurring 

polymorphisms corresponding to the residues in this region are presented in Table 5. The 

characteristics of the substitution are the following: residues 39 and 47 exhibit a single 

substitution; residues 43, 46 and 50 record two substitutions; residue 38 shows four substitutions; 

residues 42, 45 and 49 show five substitutions; and residues 40 and 44 have eight substitutions. 

Nine and thirteen substitutions were noted for residues 41 and 48, respectively. This domain 

contains 64 variant amino acids and non-conservative substitutions correspond to 41 residues. 

Several laboratories have carried out experiments addressing the role of residues in this region by 

utilizing site-specific mutagenesis. The alteration of hydrophobic residues severely affected the 

virion incorporation and transcriptional activation of Vpr [43, 44, 50, 56] 

 

Interhelical domain II (residues 51-54). This region is located between helical domains II and 

III. Of the three residues which are part of this domain, only the residue G51 has been shown to 

reduce G2/M cell cycle arrest through alanine substitution [44]. The naturally occurring 

polymorphisms corresponding to the residues in this region are presented in Table 6. The 

characteristics of the substitutions are the following: residue 54 shows two substitution; residue 

51 shows three substitutions; residue 52 shows four substitutions and residue 53 shows five 

substitutions. The variant amino acids reach a total of fourteen and the majority of them are non-

conservative substitutions.  

 



Helical domain III (residues 55-77). The presence of helical domain III has been demonstrated 

by NMR [40]. Several laboratories including ours have shown the importance of this domain for 

the function of Vpr. The naturally occurring polymorphisms noted for the residues in this region 

are presented in Table 7. The characteristics of the substitutions are the following: residues 56, 

64, 65, 71 and 75 exhibit two substitutions; residues 69, 70, 72, 73 and 76 register three 

substitutions; residues 57, 66 and 68 show four substitutions; residues 60, 61 and 67 show six 

substitutions; residues 62 and 63 have seven substitutions; residue 74 has eight substitutions; 

residues 58, 59, and 77 exhibit ten substitutions; and residue 55 shows eleven substitutions. 

While the variant amino acids reach a total of 108, 65 of them are of non-conservative nature. 

This region comprises LXXLL motif which is important for subcellular localization and also 

influences the virion incorporation of Vpr [44, 57-62]. Additionally the LXXLL domain is also 

involved in Vpr-GR interaction and its subsequent role in virus replication [63, 64]. 

 

C-terminus of Vpr (residues 78-96). The naturally occurring polymorphisms corresponding to 

the residues in the C-terminus of Vpr are presented in Table 8. The characteristics of the 

substitutions for the residues in this region are the following: residue 80 has only two 

substitutions; residues 78, 79, 82 and 92 have three substitutions; residues 81 and 90 have four 

substitutions; residues 91 and 96 have five substitutions. All of the other residues have 

substitutions ranging from six to thirteen. Of the 124 variant amino acids in this domain, 100 of 

them are of non-conservative nature.   

 This domain contains multiple arginine and serine residues. It has been reported that the 

arginine residues are important for the cell cycle arrest and subcellular localization [65, 66]. Vpr 

is known to undergo post-translational modification and the serine residues located at 28, 79, 94, 



and 96 positions of the protein serve as substrates for the phosphorylation [67]. Vpr, devoid of 

phosphorylation through site-specific mutagenesis severely affects replication of HIV-1 in 

macrophages [68]. Residue 28 contains equivalent proportion of amino acids N (44%) and S 

(48%) and Vpr of SIV cpz contains N or T at this position. On the other hand, serine residues at 

79, 94, and 96 are conserved in SIV cpz Vpr. 

          The naturally occurring polymorphisms for the whole Vpr molecule reach a total of 498 

substitutions. The non-conservative variant amino acids correspond to 72%.  It is important to 

note that all the residues in Vpr have the propensity to accept variant amino acids. The data 

presented here also reveal that the variant amino acids noted with respect to some residues are 

identical. These include residues 60(I), 61(I), 34(F), 71(H) and 72(F). We have carried out a 

detailed analysis of the variant amino acids noted in distinct subtypes (A, B, C, and D) of HIV-1. 

Such an analysis could not be carried out for several groups because of the limited information 

available regarding Vpr alleles. The data generated for subtype B Vpr alleles are presented in 

Tables 9-15. The analysis of subtype B involves a total of 275 Vpr alleles. As expected, the 

extent of polymorphisms in subtype B is less in comparison to the total polymorphisms noted 

with all the Vpr alleles. Interestingly, there are several residues that did not have any variant 

amino acids. These include residues 9, 18, 26, 34, 35, 38, 42, 46, 64, 66, and 79. On the other 

hand, the residues without variant amino acids in subtype C are different from that of subtype B 

except for 9, 26, and 64. In addition, the frequency of variant amino acids at the level of each 

residue was also determined for subtype B Vpr. The results indicate that the frequency of variant 

amino acids is low in most cases (0.4-1.1%) except for the residues 7, 19, 37, 41, 45, 55, 60, 63, 

77, 80, 84, 85, 86, 89, and 93. Analysis involving a large number of Vpr alleles also showed 

frequency patterns consistent with the data presented in Tables 9-15. With respect to the N-



terminus domain (Table 9), the residue 7 (D) has residue N substitution with a frequency of 

6.2%.  Also, while the reference Vpr allele has Y at position 15, which is the predominant amino 

acid (85%), the variant amino acid F occurs to a limited extent (6.9%). Similar scenario is also 

applicable to the residues 28, 77, and 83 (Tables 10 and 15). The residue R 80, which has been 

implicated in cell cycle arrest function of Vpr, exhibits substitution of A with a frequency of 

5.1%.      

  

Impact of amino acid polymorphisms on defined and predicted CTL epitopes in Vpr. It has 

been shown that a single amino acid change in the epitope enables the virus to evade the T cell 

surveillance [9, 69]. Hence, it is of interest to analyze the polymorphisms in the context of both 

experimentally verified and predicted CTL epitopes. As Vpr is a highly immunogenic protein, 

several CTL epitopes have been already defined [12]. CD8+ epitopes are contiguous and nine 

amino acids long. The experimentally verified CTL epitopes in Vpr are presented in Table 16 

with their location in the protein. We have presented the overall amino acid polymorphisms for 

each of the epitope. The experimentally verified CTL epitopes cluster in the region covering 1-

70 residues of Vpr. The total amino acid polymorphisms range from 36 to 107 for the individual 

epitopes. For example, the CTL epitope comprising the residues REPHNEWTL contains 53 

variant amino acids. Residues at position 1 to 9 of the epitope show 3, 6, 4, 11, 10, 6, 2, 8, and 3 

variant amino acids, respectively.  

In addition, we have also utilized bioinformatics approach to assess the effect of 

polymorphisms on CTL epitope (Bimas.dcrt.nih.gov/molbio/hla-bind).  The predicted CTL 

epitopes with respect to several HLA class I alleles are presented in Table 17. The impact of 

polymorphisms on the CTL epitope was assessed by determining the estimate of half-time of 



disassociation of the molecule containing the epitope. For this purpose, we have considered 3, 1, 

2, and 6 epitopes corresponding to HLA-A2, Cw-4, HLA B-7 and HLA B-2705, respectively.  

The influence of variant amino acids on the CTL epitope is presented in Table 18-20 with respect 

to HLA-A2 molecule. The epitopes considered for analysis correspond to residues 18-26, 38-46, 

and 66-74 of Vpr. While the reference peptide of the epitope located at residues 18-26 (Table 18) 

of Vpr shows the estimate of half time of disassociation value of 1213.356, the variant amino 

acid at position 1-9 in the epitope predicted a lower value. The substitution of variant amino 

acids at residue position 2 of the epitope affected the half-time value considerably. Interestingly, 

substitution of R lowered the value to 0.233. Similarly, the substitution of F for L at position 9 of 

the epitope also lowered the value to 4.233.The analysis of the epitope corresponding to the 

residues 38-46 is shown in Table 19. The variant amino acids at residue 39 and 41 drastically 

lowered the value. The residue 46 showed contrasting values based on the nature of the variant 

amino acid present. The impact of polymorphisms on the epitope corresponding to the residues 

66-74 is shown in Table 20. The results show that both the location and nature of the amino acid 

have an effect on the half-time disassociation of the molecule, which may lead to defective 

processing, presentation, and recognition of the epitope. 

 

Discussion 

Viral infections in individuals generally lead to a scenario where the virus is confronted 

by the host immune system involving both innate and adaptive immune responses. Regarding the 

latter, cellular and humoral immune responses have been shown to play a role in the control of 

infections of viruses including HIV-1 [70, 71]. It has been suggested that an understanding of the 

correlates of protective immunity is an important requirement for the development of vaccines 



against HIV-1. Several studies have been published on this subject [71-73]. These studies point 

out a role for CD8+ and CD4+ T cell responses and neutralizing antibodies in the control of 

HIV-1 replication. For example, it has been reported that CD8+ cells control HIV-1 in the 

acutely infected individuals [4-6]. The relevance of CD8+ T cells for the control of virus 

infection was also shown in the case of SIV infected rhesus macaques [74, 75]. Recently, the 

published data on CD8+ T cells in acute and chronic HIV-1 infection revealed that CTL epitopes 

are present in all of the proteins encoded by HIV-1. Virus replication, however, is not completely 

contained due to the emergence of CTL escape variant viruses. Based on this, it is suggested that 

vaccine efforts to control HIV-1 should take into account the high genetic variability noted 

among HIV-1. 

The continued emergence of genetic variants is a characteristic feature of RNA viruses. 

RNA dependent RNA polymerase and reverse transcriptase are error-prone enzymes and have 

been implicated as a cause for the generation of variants [76, 77]. The mutational changes in the 

protease and reverse transcriptase, depending on their location, may impact on their binding 

inhibitors targeting these enzymes. The viruses containing alterations may then be able to evade 

the inhibitory activities of the agents and are designated as drug-resistant variants. Similarly, the 

mutations in Env, Tat, and possibly other proteins can also evade the neutralizing antibody, CTL 

and T-helper cell responses [12, 71]. The emergence of escape variants eventually repopulates 

the body in the face of immune responses against the virus.  It has been suggested that immune 

escape may be a key step in the evolution of HIV-1 [30, 78-80].  

 In an effort to understand the overall polymorphisms in a HIV-1 gene product, we 

undertook a comprehensive analysis of the predicted amino acid sequences of Vpr from diverse 

HIV-1 subtypes. Considering the genetic variation noted in diverse HIV-1 [39], our hypothesis is 



that the differences in Vpr and other viral proteins may enable the viruses to escape the host 

immunological pressures. To address this issue, we have initially compiled the polymorphisms in 

Vpr at the level of individual amino acid. Vpr contains only 96 amino acids. Hence, the small 

size of the protein is an advantage for a comprehensive analysis. For this purpose, we have 

turned to the Vpr sequences which are available in the HIV database and also sequences from 

specific groups such as HIV-1 positive long-term non-progressors. A total of 976 predicted Vpr 

amino acid sequences were used for our studies. The analysis revealed several characteristic 

features with respect to the individual amino acids in the Vpr. Of the 96 amino acids, all the 

amino acids except the initiator methionine have the propensity to change. This indicates that 

Vpr molecule is highly flexible in nature. The frequency of the variant amino acids, calculated 

for subtype B Vpr at the level of individual residue, revealed that substitution is very low for 

most of the residues. This suggests that many of the substitutions in Vpr may compromise the 

function and possibly the fitness of the virus. Interestingly, there are several amino acids that can 

accommodate ten or more alterations. We designate such amino acids as hot spots in Vpr which 

include residues 15, 16, 28, 36, 37, 48, 55, 58, 77, 84, 86 and 89.  The underlying basis for the 

extensive genetic changes in specific regions of Vpr is not clear. It is likely that  the error-prone 

reverse transcriptase, the secondary structure of RNA and other factors, either alone and/ or in 

combination  may play a role in the generation of genetic variants. In this regard, Yusim et al. 

[28] have noted that Integrase (IN) exhibits the least variability and Vpu exhibits the highest 

variability. Boutwell and Essex [27] also showed that the proportion of polymorphic amino acids 

ranged from a low of 55% (RT, IN) to a high of 94% (Vpu).  In our analysis, Vpr variability is 

high which may likely be due to the inclusion of diverse isolates including the HIV-1 progenitor 

virus SIVcpz.  



 Vpr is known as a highly immunogenic protein. The presence of CTL epitopes verified 

through experimental approaches has been reported by several groups [12]. These include the 

region encompassing residues 9-70 of Vpr. Of the 96 residues, 62 (65%) have been shown to be 

associated with experimentally defined CTL epitopes.  The data presented in Table 16 show that 

there are polymorphisms with respect to the experimentally verified CTL epitopes. The presence 

of variant amino acids at distinct locations within the epitope is likely to impact the CTL epitope. 

Further, we have also evaluated the effect of Vpr polymorphisms on CTL epitopes using the 

bioinformatics approach by calculating the estimate of half time of disassociation of the 

molecule containing the epitope. Such an analysis predicted several CTL epitopes all over Vpr 

including the C-terminus with respect to specific HLA class 1 molecules. The detailed analysis 

was carried out for different HLA alleles (HLA-A2, Cw-4, HLA-B7 and HLA-B2705) involving 

a total of 12 epitopes. The polymorphisms have also been analyzed for three predicted epitopes 

corresponding to residues 18-26, 38-46, and 66-74. The substitution of the variant amino acids 

for the residues comprising the epitope resulted in a drastic reduction in the value corresponding 

to the half time of the disassociation of the molecule containing the epitope. It should, however 

be noted that additional in vitro binding studies are necessary to confirm the predicted values.   

Based on the data presented here, the amino acid polymorphisms noted in Vpr have the 

potential to contribute to the escape of the virus along with the epitopes present in other HIV-1 

proteins [30]. It is also likely that the information regarding the polymorphisms at the CTL 

epitope will provide an opportunity to create an epitope-based vaccine that will exert control 

over viral isolates from different parts of the world. It is important to mention that the extensive 

HLA-associated amino acid polymorphisms noted here may also impact on the structure/function 

of Vpr and fitness of the virus [10, 81-85]. The biological sources used for generating the 



sequence information of vpr include tissues from infected individuals, plasma viral RNA, and 

cloned viral DNA. For this reason, the Vpr sequences considered here for the analysis may be 

derived from both infectious and non-infectious viral genomes.  Hence, there is a possibility that 

the amino acid polymorphisms noted here may or may not have a chance to be acted upon by 

CTL and T-helper cell pressures. It is known that amino acids in the proximal region of the 

epitope can also influence their immunogenic potential. The amino acid polymorphisms noted in 

the putative CTL epitopes can have an effect at a single and/or multiple levels in the generation 

of immune response: i) The mutations may eliminate the binding of the peptide to the 

appropriate HLA molecule, which will be presented on the cell surface. ii) Mutations may also 

disrupt the interaction with the T-cell receptors. iii) Mutations may disrupt the intracellular 

processing of the peptides. This results in the escape of the cells expressing the viral proteins 

from the surveillance of CD8+ T cells. The variant amino acids present in the proximal or far 

away from the epitope could influence through interference with the processing of the peptide 

from the protein. With regard to the latter, the variant amino acids may be either independent or 

compensatory in relation to changes in specific residues of Vpr. In addition, variant amino acids, 

which are part of overlapping epitopes presented by different HLA molecule, can also exert an 

influence on the epitope [30].  

 HIV variability is an important factor that should be taken into account in the efforts 

directed towards the development of vaccines against HIV-1. In order for the vaccines to be 

effective against diverse HIV-1, strategies that are being considered include consensus sequence 

approaches and polyvalent vaccines in the form of a mixture of genes/proteins from different 

subtypes of HIV-1. Despite the extensive variability reported for HIV-1, the nature and extent of 

variation has not been systematically investigated. Such an analysis is difficult to carry out for 



HIV-1 Gag, Pol or Env protein due to its size. It is for this reason that we have selected Vpr, a 

small protein. The results presented for Vpr here are interesting and novel as they describe 

genetic variation involving global HIV-1. Surprisingly, the frequency of the variant amino acids 

for most of the residues is low. This suggests that majority of the residues cluster around a 

sequence shared by HIV-1 isolates of different subtypes. It is likely that the influence of the 

residues on the fitness of the virus counters the variability, thus limiting the genetic variation. 

The information on Vpr polymorphisms will be of value for the development of vaccines based 

on the auxiliary genes of HIV-1.    
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Table 1. Vpr sequences used for the analysis of amino acid polymorphisms 

Subtype Designation Number of Vpr Sequences 

A 67 

B 294 

C 185 

D 44 

F1 6 

F2 4 

G 8 

H 3 

J 2 

K 2 

AE 45 

AG 39 

AB 3 

cpx 28 

Others (includes DF, BC, CD, BG, 01B, 

A1C, A1D, A1G, etc) 

198 

O 39 

N 3 

cpz 4 

Unclassified 3 

 

 

Table 2. The polymorphisms in the N-Terminus of Vpr (residues 1-16) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

different clades 

Number 

of variants 

1 M none none 

2 E D, K 2 

3 Q H, L, M, P, R 5 

4 A D, F, I, L, N, P, S, T, V 9 

5 P L, Q, S 3 

6 E A, D, G, K, Q, S, V 7 

7 D E, G, H, N, V 5 

8 Q A, E, H, L, P, R 6 

9 G R 1 

10 P A, L,  N, S, T 5 

11 Q A, E, S, P 4 

12 R E, G, K 3 

13 E A, D, I, G, Q, V 6 

14 P H, L, Q, S 4 

15 Y C, D, F, G, H, L, M, N, P, S, V 11 

16 N A, D, E, H, I, P, Q, R, S, T 10 

 



Table 3. The polymorphisms in Helical Domain I of Vpr (residues 17-33) 

Residue Residues in 

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

different clades 

Number 

of variants 

17 E A, D, G, Q, T, V 6 

18 W G, R 2 

19 T A, I, L, M, P, R, S, V 8 

20 L I, M, V 3 

21 E A, D, G, K, T  5 

22 L F, I, M, P, T, V 6 

23 L S,V 2 

24 E D, G, K, Q, R 5 

25 E A, D, G, K 4 

26 L  F, I 2 

27 K I, M, N, Q, R 5 

28 S A, D, E, G, H, I, K, N, Q, R, T, V 12 

29 E D, G, Q, V 4 

30 A D, P, S, T, V 5 

31 V A, D, I, L, M, T 6 

32 R G, K, Q, T, W, 5 

33 H R 1 

 

 

Table 4. The polymorphisms in the Interhelical Domain 1 of Vpr (residues 34 – 37) 

Residue Residues in   

NL4-3 Vpr 

Variant residue(s) noted in viruses of different 

clades 

Number 

of variants 

34 F L, V, Y 3 

35 P H, L, S 3 

36 R G, I, K, M, N, P, Q, S, T, W 10 

37 I A, D, E, G, H, K, L, M, N, P, Q, R, S, T, V, Y 16 

 



Table 5. The polymorphisms in Helical Domain II of Vpr (residues 38 – 50) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

different clades 

Number of 

variants 

38 W C, F, T, Y 4 

39 L F 1 

40 H I, L, M, N, Q, R, T, Y 8 

41 N A, D, E, G, H, Q, R, S, W 9 

42 L C, I, F, M, V 5 

43 G E, R 2 

44 Q E, H, L, K, N, R, T, V 8 

45 H F, L, Q, W, Y 5 

46 I D, V 2 

47 Y H 1 

48 E A, D, G, H, I, K, N, Q, R, S, T, V, Y 13 

49 T H, N, M, S, Y 5 

50 Y H, S 2 

 

 

Table 6. The polymorphisms in Interhelical Domain II of Vpr (residues 51 – 54) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

different clades 

Number 

of variants 

51 G E, K, R 3 

52 D A, G, I, N 4 

53 T A, L, N, P, S 5 

54 W G, R 2 

 



Table 7. The polymorphisms in Helical Domain III of Vpr (residues 54–77) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

different clades 

Number 

of variants 

55 A E, G, I, L, M, P, Q, R, S, T, V 11 

56 G E, R 2 

57 V A, L, M, W 4 

58 E A, G, I, K, L, M, Q, R, T, V 10 

59 A D, F, I, L, M, N, P, S, T, V 10 

60 I  F, L, M, T, V, Y 6 

61 I A, L, M, T, V, Y 6 

62 R I, K, L, Q, S, T, W 7 

63 I F, L, M, S, T, V, Y 7 

64 L F, V 2 

65 Q H, R 2 

66 Q H, K, L, R 4 

67 L A, F, I, M, P, Q 6 

68 L I, M, P, R 4 

69 F L, S, V 3 

70 I A, T, V 3 

71 H L, Y 2 

72 F S, Y, L 3 

73 R G, S, T 3 

74 I F, H, L, M, N, S, T, V 8 

75 G K, R 2 

76 C G, S, Y 3 

77 R A, H, L, K, N, P, Q, S, T, W 10 

 



Table 8. The polymorphisms in the Carboxy-Terminal Region of Vpr (residues 78–96) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

different clades 

Number 

of variants 

78 H L, R, Y 3 

79 S N, R, T 3 

80 R A, K 2 

81 I G, M, R, V 4 

82 G A, D, S 3 

83 V H, I, L, M, N, P, T, V 8 

84 T A, F, G, I, L, M, N, P, Q, S, V, W, Y 13 

85 R A, H, I, L, P, Q, T, V, Y 9 

86 Q E, G, H, M, P, R, S, T, V, Y 10 

87 R A, E, G, K, M, N, P, Q, S, T 10 

88 R A, E, G, I, S, T 6 

89 A D, E, G, I, L, N, P, R, S, T, V 11 

90 R G, I, N, S 4 

91 N D, H, I, K, S 5 

92 G A, E, R 3 

93 A D, F, G, L, M, N, P, S, T, V 10 

94 S D, E, F, G, H, N, R, V 8 

95 R A, D, G, I, K, P, S, T 8 

96 S F, P, T, V, Y 5 

 

 

 

 

 



Table 9. The frequency of variant amino acids in the N-Terminus of Vpr (Residues 1-16) 

Residue  Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B* 

1 M no change 

2 E D (0.4) 

3 Q H (0.4), R (1.8) 

4 A D (0.7), T (0.4), V (1.1) 

5 P L (0.4), S (0.4) 

6 E A (1.1), D (0.4), K (1.1), Q (0.7) 

7 D N (6.2), V (0.4) 

8 Q H (1.1) 

9 G no change 

10 P L (0.4), S (0.7) 

11 Q A (0.7), E (0.4), P (1.8), S (1.8)  

12 R K (0.4) 

13 E I (0.4), Q (1.1), V (0.7) 

14 P Q (0.4), S (0.7) 

15 Y C (0.4), D (0.4), F (6.9), H (5.0), N (0.7), S (0.4), 

V (0.4) 

16 N A (0.4), H (1.1), I (0.4), Q (0.7), P (0.4), R (0.4), 

S (0.4), T (0.7) 

*275 Vpr alleles were used for analysis. 

The numbers in the parentheses represent the percent frequency of the variant amino acid in the 

Vpr alleles analyzed. 

 

 



Table 10. The frequency of variant amino acids in Helical Domain I of Vpr (Residues 17-33) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B 

17 E A (3.3), D (0.4), G (0.4), Q (2.2), V (0.4) 

18 W no change 

19 T A (12.7), R (0.4) 

20 L I (4.4) 

21 E G (0.4) 

22 L F (0.4), I (1.1), P (0.4) 

23 L V (0.4), S (0.4) 

24 E G (0.4), K (0.4), Q (0.7), R (0.4) 

25 E A (0.4), D (2.9), K (0.4) 

26 L  no change 

27 K N (0.4) 

28 S G (0.4), H (0.7), N (43.5), R (4.7), T (2.5) 

29 E D (0.4), V (0.4) 

30 A P (0.4) 

31 V A (0.4), D (0.4), I (0.4), L (0.4), T (0.4) 

32 R K (3.6), Q (0.4), W (0.4) 

33 H R (3.6) 

 

 

 

Table 11. The frequency of variant amino acids in the Interhelical Domain 1 of Vpr (Residues 

34–37) 

 

Residue Residues in   

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B 

34 F no change 

35 P no change 

36 R G (1.1), W (1.8), S (1.5) 

37 I A (1.5), E (3.6), G (1.1), K (0.4), L (1.8), M (2.5), 

N (0.4), P (16), R (0.4),  

S (0.7), T (7.6), V (19.3) 

 



Table 12. The frequency of variant amino acids in Helical Domain II of Vpr (Residues 38–50) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B 

38 W no change 

39 L F (0.4), I (0.4) 

40 H L (2.2), N (0.4), Q (1.5), R (0.4), T (0.4), Y (0.4) 

41 N A (0.7), D (0.7), E (0.4), G (52.0), S (30.5) 

42 L no change 

43 G E (0.4), R (0.4) 

44 Q R (0.4) 

45 H F (0.7), L (1.1), Q (0.4), Y (24.4) 

46 I no change 

47 Y H (0.4) 

48 E A (0.4), D (2.5), G (1.1), K (0.4), Q (0.4), V (0.4) 

49 T N (0.7) 

50 Y S (0.4) 

 

 

Table 13. The frequency of variant amino acids in Interhelical Domain II of Vpr (Residues 

51 – 54) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B 

51 G E (0.7), K (0.4) 

52 D N (0.7), I (0.4) 

53 T A (0.4), L (0.4) 

54 W R (0.4), G (0.4) 

 



Table 14. The frequency of variant amino acids in Helical Domain III of Vpr (Residues 55–

77) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B 

55 A E (2.2), P (1.1), Q (0.4), T (19.6), V (1.8) 

56 G R (0.4), E (0.7) 

57 V W (0.4) 

58 E G (1.1), I (0.4), K (1.1), Q (0.7), V (0.4) 

59 A  L (0.4), P (0.4), S (0.4), V (0.4) 

60 I  L (16.4) 

61 I L (0.4), M (1.1), T (3.3), V (1.5) 

62 R K (0.7), L (0.4), S (0.4) 

63 I M (5.8), S (1.8),  T (11.3), V (1.8) 

64 L no change 

65 Q H (0.4) 

66 Q no change 

67 L M (1.5), P (0.7) 

68 L M (1.5) 

69 F L (1.8) 

70 I T (2.9), V (1.1) 

71 H L (0.4), Y (0.4) 

72 F S (1.5), Y (0.4) 

73 R T (0.7) 

74 I L (0.4), M (0.4), V (0.4) 

75 G R (1.1) 

76 C G (1.1) 

77 R H (5.5), Q (42.5) 

 



Table 15. The frequency of variant amino acids in the Carboxy-Terminal Region of Vpr 

(Residues 78–96) 

Residue Residues in  

NL4-3 Vpr 

Variant residue(s) noted in viruses of 

subtype B 

78 H L (0.7) 

79 S no change 

80 R A (5.1) 

81 I G (0.4), M (0.7), V (0.4) 

82 G D (0.7), S (0.7) 

83 V I (86.9), L (0.4), T (0.7) 

84 T A (0.4), F (0.4), G (0.7), I (30.9), L (2.5), M (0.4), 

N (0.7), S (0.4), V (0.4) 

85 R H (0.4), I (0.4), L (2.5), P (15.6), Q (28.4), T (0.4), 

Y (1.1) 

86 Q M (0.4), P (1.1), R (21.1), S (1.5), V (1.1) 

87 R A (0.4), G (1.5), K (0.4), M (0.4),  

N (0.4), S (3.3), T (3.6) 

88 R A (2.2), G (1.5), I (0.4), S (0.4), T (0.7) 

89 A E (0.7), G (0.4), P (0.7), R (2.2), S (2.2), T (10.2), 

V (0.4) 

90 R G (0.4), N (0.4), S (0.4) 

91 N D (1.5), H (0.4), I (0.4), K (0.4) 

92 G A (0.4), E (0.4), R (0.7) 

93 A D (0.4), L (0.4), P (0.7), S (6.5), T (2.2), V (0.4) 

94 S  F (0.4), G (2.5), N (1.1), R (3.3),V (0.4) 

95 R A (0.4), D (0.4), I (0.4), K (0.4), T (1.1), S (0.4) 

96 S P (4.0) 

 

 



Table 16. The extent of amino acid polymorphisms in experimentally defined CTL epitopes 

Location of the 

epitope in Vpr 

Amino acid sequence Total number of 

variant amino 

acids in the CTL 

epitope 

Reference 

1 - 18  MEQAPENQGLQREPYNEW 87 [86] 

9 - 26 GPQREPYNEWTLELLEEL 87 [87] 

12 - 20 REPHNEWTL 53 [28, 88, 89]  

19 - 28 TLEILEELKN 51 [86] 

25 - 40 ELKNEAVRHFPRIWLH 87 [90] 

29 - 37 EAVRHFPRI 52 [91-94] 

30 - 38 AVRHFPRIW 52 [28, 88, 95] 

31 - 50 VRHFPRWLHSLGQYIYETY 107 [96] 

31 - 39 VRHFPRIWL 48 [97] 

34 - 42 FPRIWLHGL 58 [28, 87, 89, 97-103] 

41 - 49 SLGQHIYET 49 [99] 

41 - 57 GLGQYIYETYGDTWTGV 82 [87] 

46 - 54 IYETYGDTW 36 [104] 

48 - 57 ETYGDTWTGV 50 [87, 97] 

52 - 62 DTWAGVEAIIR 66 [97] 

53 - 63 TWAVEAIIRI 69 [92] 

55 - 70 AGVEAIIRILQQLLFI 86 [28] 

59 - 67 AIIRILQQL 49 [10, 28, 89, 96, 98, 

105, 106] 

62 - 70 RILQQLLFI 38 [89, 98, 106] 

 

 

 

 



Table 17. The predicted HLA Class 1 CTL epitopes in HIV-1 Vpr 

Location of the  

predicted epitope 

Amino acid sequence HLA allele 

7 – 15 DQGPQREPY B62 

8 – 16 QGPQREPYN Dd 

11 – 19 QREPYNEWM B_2705 

14 – 22 PYNEWMLDL A24,  Kd 

18 – 26 WMLDLLEDL A_0201, A_0205, B_2705, B_3901, 

Db_revised, Kd 

26 – 34 LKHEAVRHF Cattle_A20 

31 – 39  VRHFPRPWL B_2705 

34 – 42  FPRPWLHEL B7, Cw_0401 

38 – 46 WLHELGQQI A_0201 

39 – 47 LHELGQQIY B_3801 

49 – 57 TYGDTWEGV Kd 

60 – 68 IVRTLQQLL B7 

61 – 69 VRTLQQLLF B_2702, B_2705 

64 – 72 LQQLLFVHF B62, B_2705, B_3902 

65 – 73 QQLLFVHFR A_3101, B_2705, Cattle_A20 

66 – 74 QLLFVHFRI A_0201 

72 – 80 FRIGCQHSR B_2705, Cattle_A20 

79 – 87 SRIGIIRGR B_2705, Cattle_A20 

87 – 95 RRGRNGSGR B_2705, Cattle_A20 

 

 



Table 18.  Effect of variant amino acids on CTL epitope corresponding to residues 18-26 of 

Vpr 

Amino Acid Sequence of Predicted Epitope Score
β
 

Prototype sequence (start position 18)
α
  

WMLDLLEDL 1,213.356 

  

Natural variations observed at this epitope  

GMLDLLEDL 263.773 

RMLDLLEDL 263.773 

  

WALDLLEDL 23.334 

WILDLLEDL 231.004 

WLLDLLEDL 1,680.031 

WPLDLLEDL 10.967 

WRLDLLEDL 0.233 

WSLDLLEDL 10.967 

WVLDLLEDL 147.003 

WTLDLLEDL 23.334 

  

WMIDLLEDL 327.934 

WMMDLLEDL 1,213.356 

WMVDLLEDL 327.934 

  

WMLALLEDL 295.940 

WMLELLEDL 1,213.356 

WMLGLLEDL 295.940 

WMLKLLEDL 295.940 

WMLTLLEDL 295.940 

  

WMLDLSEDL 527.546 

WMLDLVEDL 1,213.356 

  

WMLDLLDDL 1,213.356 

WMLDLLGDL 321.911 

WMLDLLKDL 2,476.237 

WMLDLLQDL 2,476.237 

WMLDLLRDL 495.247 

  

WMLDLLEDF 4.233 

WMLDLLEDI 592.569  α
 Accession No.: A1.TZ.01.A341_AY253314 

β
 Estimate of Half Time of Disassociation of a Molecule Containing This Epitope 

 

 

 



 

Table 19.  Effect of variant amino acids  on CTL Epitope corresponding to residues 38-46 

of Vpr 

Amino Acid Sequence of Predicted Epitope Score
β
 

Prototype sequence (start position 38)
α
  

WLHELGQQI 196.763 

  

Natural variations observed at this epitope  

CLHELGQQI 42.774 

FLHELGQQI 196.763 

TLHELGQQI 42.774 

YLHELGQQI 196.763 

  

WFHELGQQI 0.137 

  

WLIELGQQI 196.763 

WLLELGQQI 728.022 

WLMELGQQI 728.022 

WLNELGQQI 196.763 

WLQELGQQI 196.763 

WLRELGQQI 14.954 

WLTELGQQI 196.763 

WLYELGQQI 629.64 

  

WLHALGQQI 47.991 

WLHDLGQQI 196.763 

WLHGLGQQI 47.991 

WLHHLGQQI 47.991 

WLHNLGQQI 47.991 

WLHQLGQQI 47.991 

WLHRLGQQI 47.991 

WLHSLGQQI 47.991 

WLHWLGQQI 47.991 

  

WLHECGQQI 196.763 

WLHEFGQQI 747.698 

WLHEIGQQI 196.763 

WLHEMGQQI 196.763 

WLHEVGQQI 196.763 

  

WLHELGEQI 96.414 

WLHELGHQI 196.763 

WLHELGKQI 196.763 

WLHELGLQI 196.763 

WLHELGNQI 196.763 



WLHELGRQI 39.353 

WLHELGTQI 196.763 

WLHELGVQI 196.763 

  

WLHELGQFI 1082.194 

WLHELGQHI 196.763 

WLHELGQLI 196.763 

WLHELGQWI 1082.194 

WLHELGQYI 1082.194 

  

WLHELGQQD 0.281 

WLHELGQQV 1311.751  α
 Accession No.: A1.TZ.01.A341_AY253314 

β
 Estimate of Half Time of Disassociation of a Molecule Containing This Epitope 



Table 20.  Effect of variant amino acids on CTL Epitope corresponding to residues 66-74 of 

Vpr 

Amino Acid Sequence of Predicted Epitope Score
β
 

Prototype sequence (start position 66)
α
  

QLLFVHFRI 223.888 

  

Natural variations observed at this epitope  

HLLFVHFRI 7.612 

KLLFVHFRI 783.608 

LLLFVHFRI 380.609 

RLLFVHFRI 223.888 

  

QFLFVHFRI 0.155 

QILFVHFRI 30.785 

QMLFVHFRI 161.697 

QPLFVHFRI 1.461 

QQLFVHFRI 22.700 

  

QLIFVHFRI 60.510 

QLMFVHFRI 223.888 

QLPFVHFRI 60.510 

QLRFVHFRI 4.599 

  

QLLFVLFRI 514.942 

QLLFVYFRI 335.832 

  

QLLFVHLRI 38.601 

QLLFVHYRI 38.601 

QLLFVHSRI 38.601 

  

QLLFVHFRF 1.599 

QLLFVHFRH 1.599 

QLLFVHFRL 458.437 

QLLFVHFRM 106.613 

QLLFVHFRN 1.599 

QLLFVHFRS 1.599 

QLLFVHFRT 159.920 

QLLFVHFRV 1,492.586  α
 Accession No.: A1.TZ.01.A341_AY253314 

β
 Estimate of Half Time of Disassociation of a Molecule Containing This Epitope 
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